Differential expression of connective tissue growth factor in microglia and pericytes in the human diabetic retina.

نویسندگان

  • E J Kuiper
  • A N Witmer
  • I Klaassen
  • N Oliver
  • R Goldschmeding
  • R O Schlingemann
چکیده

BACKGROUND/AIM Connective tissue growth factor (CTGF) stimulates extracellular matrix formation, fibrosis, and angiogenesis. It has a role in the pathogenesis of diabetic nephropathy and possibly in diabetic retinopathy (DR): in cultured retinal vascular cells CTGF is induced by VEGF-A. To further characterise this role the authors investigated CTGF expression in normal and diabetic human retina. METHODS CTGF expression patterns were studied by immunohistochemistry in the retina of eyes of 36 diabetic persons and 18 non-diabetic controls and compared with markers of endothelial cells (CD31, PAL-E), pericytes (NG2), astrocytes (GFAP), and microglia (CD45). RESULTS In the retina, distinct and specific staining of CTGF was observed in microglia, situated around or in close vicinity of retinal capillaries. In the control cases, sporadic staining of pericytes was also observed within the vascular wall. In contrast, in the retina of people with diabetes, CTGF staining in microglia was decreased and staining in pericytes was increased. This pattern of predominantly pericyte staining was observed in 20 out of 36 diabetic cases and in one out of 18 controls. The altered CTGF staining patterns in the diabetic cases did not correlate to staining of PAL-E, a marker of retinal vascular leakage associated with DR. CONCLUSIONS The study shows that CTGF is expressed in microglia in the normal retina whereas in a large subset of diabetic persons, CTGF expression shifts to microvascular pericytes. This altered CTGF expression pattern appears unrelated to manifest DR and may therefore represent a preclinical retinal change caused by diabetes. The results suggest a distinct, but as yet unidentified, role of CTGF in the pathogenesis of diabetic retinopathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SCIENTIFIC REPORT Differential expression of connective tissue growth factor in microglia and pericytes in the human diabetic retina

Background/aim: Connective tissue growth factor (CTGF) stimulates extracellular matrix formation, fibrosis, and angiogenesis. It has a role in the pathogenesis of diabetic nephropathy and possibly in diabetic retinopathy (DR): in cultured retinal vascular cells CTGF is induced by VEGF-A. To further characterise this role the authors investigated CTGF expression in normal and diabetic human reti...

متن کامل

Gremlin gene expression in bovine retinal pericytes exposed to elevated glucose.

AIM To assess the influence of high extracellular glucose on the expression of the bone morphogenetic protein (BMP) antagonist, gremlin, in cultured bovine retinal pericytes (BRPC). METHODS BRPC were cultured under conditions of 5 mM and 30 mM d-glucose for 7 days and total RNA was isolated. Gremlin mRNA levels were correlated, by RT-PCR, with other genes implicated in the pathogenesis of dia...

متن کامل

Connective Tissue Growth Factor Is Involved in Structural Retinal Vascular Changes in Long-Term Experimental Diabetes

Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL compo...

متن کامل

Cysteine-rich protein 61 and connective tissue growth factor induce deadhesion and anoikis of retinal pericytes.

Loss of retinal pericytes is one of the distinctive features of diabetic retinopathy (DR), which is characterized by retinal capillary obliteration. The matricellular proteins, cysteine-rich protein 61 (Cyr61) and connective tissue growth factor (CTGF), are aberrantly expressed in the retinal vasculature from the early stages of DR, but their effects on retinal pericytes are unknown. We show he...

متن کامل

Extremely low frequency-pulsed electromagnetic fields affect proangiogenic-related gene expression in retinal pigment epithelial cells

Objective(s): It is known that extremely low frequency-pulsed electromagnetic fields (ELF-PEMF) influence multiple cellular and molecular processes. Retinal pigment epithelial (RPE) cells have a significant part in the emergence and pathophysiology of several ocular disorders, such as neovascularization. This study assessed the impact of ELF-PEMF on the proangiogenic features of RPE cells. Mate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The British journal of ophthalmology

دوره 88 8  شماره 

صفحات  -

تاریخ انتشار 2004